
Office/Department/Division Name

Understanding and Improving Pre-trained Large
Language Models through a Probabilistic Lens

Xinyi Wang

10/15/2023

Computer Science

Office/Department/Division Name

Language Model

• Definition: a probability distribution 𝑃 over sequences of words
𝑤1, 𝑤2, … , 𝑤𝑇.

• Different assumptions on decomposing this joint probability produce
different types of language models.

Bag of words model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖)

Hidden Markov model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =

ℎ0,ℎ1,…,ℎ𝑇∈𝐻

𝑝(ℎ0)ෑ

𝑖=1

𝑇

𝑝 𝑤𝑖 ℎ𝑖 𝑝(ℎ𝑖|ℎ𝑖−1)

Classic
language
models:

Neural
language
models:

Generative language model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1)

Masked language model

𝑝 𝑤1, 𝑤2, … , 𝑤𝑇 =ෑ

𝑖=1

𝑇

𝑝(𝑤𝑖|𝑤1, … , 𝑤𝑖−1, 𝑤𝑖+1, … , 𝑤𝑇)

Office/Department/Division Name

Existing large language models

• Real-world exponential parameter growth of large language models (source).

https://lifearchitect.ai/models/

Office/Department/Division Name

Curious capabilities of LLMs

• Fine-tuning: pre-trained LLMs are good starting
points for downstream tasks.

• Prompting: use a LLM as it is. Usually require
instruction tuning.

• In-context learning (Brown et al., 2020)

• chain-of-thoughts prompting (Wei et al.,
2022)

• …

• Scaling:

• Exponential scaling law: test loss v.s. model
size, dataset size, compute (Kaplan et al.,
2020)

• Emergent abilities: An ability is emergent if it
is not present in smaller models but is present
in larger models. (Wei et al., 2022) (Brown et al., 2020)

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2005.14165

Office/Department/Division Name

How to understand in-context learning?

Large Language
Model
(LLM)

(X1, Y1)

(X2, Y2)

(Xk, Yk)

…

Demonstrations
(X, ?)

Y

Test example

Why LLMs can do in-context learning:
● Pretraining distribution? HMM (Xie et al., 2022)?

Long tailed? Burstiness (Chan et al. 2022)?
● Mimicking gradient descent? (von Oswald et al.

2022, Akyurek et al. 2022, Dai et al. 2023)

In-context learning is highly unstable:
● How to choose a set of demonstrations if we

have some annotated data? Similarity? (Liu et
al. 2022; Su et al. 2022) Entropy of predicted
labels? (Lu et al. 2022)

https://arxiv.org/pdf/2212.10559.pdf

Office/Department/Division Name

Large Language Models are Implicitly Topic Models:
Explaining and Finding Good Demonstrations for In-
Context Learning

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, William Yang
Wang (NeurIPS 2023)

http://arxiv.org/abs/2301.11916

Office/Department/Division Name

LLMs are implicitly topic models

• Assumption: the generated continuation is independent of the

prompt given the concept variable θ.

LLM: Topic model:

Our assumption:

Generated continuation Prompt LLMs implicitly infer a latent
concept variable θ from the
prompt

LLMs generate the continuation
exclusively based on the
inferred concept variable θ

Language model probability output by an LLM

Office/Department/Division Name

Data generation direction matters

X

Y θ

e.g. sentiment analysis, topic classification,
emotion classification tasks

Text input

Label
(discrete)

Latent concept
variable

X

Y θ

e.g. linguistic analysis, hate speech detection

Text input

Label
(discrete)

Latent concept
variable

• Assumption: the data for each task is generated by a specific value

of θ. i.e. a different value of θ indicates a different task.

Bayes optimal classifier Bayes optimal classifier

Office/Department/Division Name

Causal v.s. anti-causal

sentiment analysis linguistic analysis

Topic classification

Emotion classification Hate speech detection

• 4-shot in-context learning accuracy with GPT2-large.

Office/Department/Division Name

Analysis in-context learning classifier

• We want to make the above in-context learning classifier

as close to the Bayes optimal classifier as possible, which means we need to

make as concentrated on the θ value

corresponding to task d as possible.

• We can use the above conclusion to first learn a delegate of the true latent

concept variable, and then use the delegate to choose the best

demonstrations from a set of annotated data.

Latent concept variable learning
(soft prompt tuning)

Demonstration selection

Office/Department/Division Name

Algorithm overview

Office/Department/Division Name

Latent Concept Learning

• Add a few new concept
tokens to the original
vocabulary of the LLM.

• Train the embedding of
these concept tokens
while freezing all other
parameters, such that the
LLM can predict the label
Y given X and the
concept tokens as
prefixes.

• Use GPT2-large in
practice.

LLM

… …

θ X

Cross entropy loss
log𝑃𝑀(Y|θ,X)

compute

Update
embeddings

…

Y

Dataset

Office/Department/Division Name

Demonstration Selection

• Compute the LM
probability of predicting
the concept tokens
given an example (X, Y).

• Then choose the top-k
examples producing
the highest probabilities
as the demonstrations
for in-context learning.

• Use GPT2-large in
practice.

LLM

… …

X Y

Language model
probability
𝑃𝑀(θ|X,Y)

compute

Select (X,Y) pairs

…

θ

Dataset

Office/Department/Division Name

In-context Learning

• Test the performance of
the chosen k
demonstrations by using
them for in-context
learning on a separate
test set.

• Different LLMs from the
previous stages can be
used.

• Use different sizes GPTs
in practice.

LLM

… …

Test Y

Test X

infer
… … … …

…

(X1,Y1), (X2,Y2), …, (Xk,Yk)

Office/Department/Division Name

Main results

● Results are averaged over 8 text classification datasets, each experiment is repeated by 5

runs.

● We select the optimal demonstrations by GPT2-large, and use the same set of

demonstrations for all other LLMs.

Office/Department/Division Name

A TSNE plot of the learned concept tokens

• SST2: movie review sentiment

analysis

• FPB: financial news sentiment

analysis

• COLA: grammar error
detection

• DBpedia: topic classification

• ETHOS-SO and ETHOS-R: hate

speech detection

• EmoC and EmoS: emotion
classification

Office/Department/Division Name

Takeaways

● Real-world LLMs implicitly infer a latent concept variable
during in-context learning time.

● When have a set of annotated data, we can first learn a
delegate of the concept variable and then select the
demonstrations that can best represent/infer the concept
variable.

● The selected demonstrations can be transferred across
different-size LLMs pre-trained on similar text distributions.
This indicates such behavior of LLMs comes from the pre-
training data distribution.

Office/Department/Division Name

Guiding Language Model Reasoning with Planning
Tokens
Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi Yuan, Alessandro
Sordoni (Arxiv)

https://arxiv.org/abs/2310.05707

Office/Department/Division Name

Chain-of-thoughts reasoning

• Question: Every day, Wendi feeds each of her chickens three
cups of mixed chicken feed, containing seeds, mealworms
and vegetables to help keep them healthy. She gives the
chickens their feed in three separate meals. In the morning,
she gives her flock of chickens 15 cups of feed. In the
afternoon, she gives her chickens another 25 cups of
feed. How many cups of feed does she need to give her
chickens in the final meal of the day if the size of Wendi's
flock is 20 chickens?

• If each chicken eats 3 cups of feed per day, then for 20
chickens they would need 3*20=<<3*20=60>>60 cups of feed
per day.

• If she feeds the flock 15 cups of feed in the morning, and 25
cups in the afternoon, then the final meal would require 60-
15-25=<<60-15-25=20>>20 cups of chicken feed.

• The answer is: 20

Question

Step 1

Step 2

Step N

Answer

… …

Office/Department/Division Name

Planning errors made by LLMs
Question: Every day, Wendi feeds each of her chickens three cups of mixed chicken feed, containing seeds,
mealworms and vegetables to help keep them healthy. She gives the chickens their feed in three separate
meals. In the morning, she gives her flock of chickens 15 cups of feed. In the afternoon, she gives her
chickens another 25 cups of feed. How many cups of feed does she need to give her chickens in the final
meal of the day if the size of Wendi's flock is 20 chickens?

Every day, Wendi gives her chickens 15
cups of feed in the morning + 25 cups of
feed in the afternoon = <<15+25=40>>40
cups of feed.

If she has 20 chickens and she feeds them
40 cups of feed every day, then each
chicken gets 40/20 = <<40/20=2>>2 cups
of feed per chicken.

The answer is: 2

<prefix> <+> Wendi gives her flock 15 cups of feed in the
morning and another 25 cups in the afternoon, for a total of
15+25 = <<15+25=40>>40 cups of feed.

<prefix> <*> If Wendi has 20 chickens, then she needs 20*3
= <<20*3=60>>60 cups of feed to feed her flock.

<prefix> <-> If Wendi has already given her flock 40 cups of
feed, then she needs to give her flock 60-40 = <<60-
40=20>>20 more cups of feed.

<prefix> <answer> The answer is: 20

Vanilla supervised fine tuning Fine tuning with arithmetic planning tokens

* Drifting away
from the correct
reasoning flow

Office/Department/Division Name

A Bayesian view of chain-of-thoughts

Latent variable distribution only
drastically changes at the
beginning of each CoT step

Simplified assumption: there is a discrete planning variable governing
each chain-of-thoughts step.

Office/Department/Division Name

Planning tokens
Question

Step 1

Step 2

Step N

Answer

… …

Planning
tokens

Planning
tokens

Planning
tokens

Planning
tokens

<prefix> <+> Wendi gives her flock 15 cups of feed in the
morning and another 25 cups in the afternoon, for a total of
15+25 = <<15+25=40>>40 cups of feed.

<prefix> <*> If Wendi has 20 chickens, then she needs 20*3 =
<<20*3=60>>60 cups of feed to feed her flock.

<prefix> <-> If Wendi has already given her flock 40 cups of
feed, then she needs to give her flock 60-40 = <<60-40=20>>20
more cups of feed.

<prefix> <answer> The answer is: 20

General
planning
tokens

Specialized planning tokens

Idea:
better
control of
reasoning
flow

Office/Department/Division Name

Training with planning tokens

𝑃𝜑(𝑇𝑖|𝑆𝑖 , 𝑆𝑐𝑜𝑛𝑡𝑒𝑥)

ෑ

𝑖=1

𝑁

𝑃𝜃(𝑇𝑖|𝑄, 𝑇1, 𝑆1, … , 𝑇𝑖−1, 𝑆𝑖−1)𝑃𝜃(𝑆𝑖|𝑄, 𝑇1, 𝑆1, … , 𝑇𝑖−1, 𝑆𝑖−1, 𝑇𝑖)

Q

S1

S2

SN

A

… …

T1

T2

TN

TA

Assign a planning token to each reasoning step in
the training set

Only tune the embeddings of the planning tokens and
some helping adapters (e.g. LORA)

LLM
(very large)

Step classifier
(light weight)

Plan Generate

𝑇𝑖 ∈ Ω

* Note: to increase the representation capacity, the planning token can be a sequence
of tokens.

Office/Department/Division Name

Step classifiers

Si

Planning
token 1

Planning token 2

Planning token 3

Arithmetic Clustering Latent

Step embedding

MLP

β

Gaussian softmax

MLP

Reconstructed embedding

Contrastive
loss

MSE Reconstruction loss

Planning token

* Reasoning steps embedded with T5 encoder

Office/Department/Division Name

Planning tokens implementation

𝑊𝑇

Output

‘

‘ 𝑊𝑇
′

Planning
token output
embeddings

Planning
token input
embeddings

Pretrained LLM: Llama 2 (7B)

Office/Department/Division Name

Combination with parameter efficient tuning

𝑊𝑇

Output

‘

‘ 𝑊𝑇
′

Planning
token output
embeddings

Planning
token input
embeddings

LORA adapters
on MLP modules

Pretrained LLM: Llama 2 (7B)

Office/Department/Division Name

Main results

Office/Department/Division Name

Reasoning length effect

Office/Department/Division Name

Error types predicted by GPT4

Error type Misunderstanding of question Computation
errors

Inaccurate extraction
of question
information

Wrong application of
math knowledge

Wrong
logic

Example Question: …How many cups of
feed does she need to give her
chickens in the final meal of
the day…
…then each chicken gets 40/20
= <<40/20=2>>2 cups of feed
per chicken. The answer is: 2

…7 + 3301x =
3371x…

Question: …He spends
the next half-hour
driving at a speed of
30mph…
…He drove 2 hours at
30mph so he traveled
2*30=<<2*30=60>>60
miles…

…The number of feet
the plane is from the
ground is the target
of a geometric
sequence…

…$2ab =
12 = 2^3
\cdot
b^2$...

N/A 17 48 55 4 48

SQ-VAE 21 44 42 4 50

Office/Department/Division Name

Takeaways

• Planning tokens improve LLM’s math reasoning
performance by (a) increasing the reasoning sequence
capacity, (b) making LLM a mix-of-expert model for
different reasoning types.

• Planning tokens improve the intra-step consistency.

• Concurrent work shows that similar method (our general
baseline) also works on QA tasks at pre-training time (Goyal
et al. 2023).

https://arxiv.org/abs/2310.02226
https://arxiv.org/abs/2310.02226

Office/Department/Division Name

Thank you!
Questions?

	Slide 1: Understanding and Improving Pre-trained Large Language Models through a Probabilistic Lens
	Slide 2: Language Model
	Slide 3: Existing large language models
	Slide 4: Curious capabilities of LLMs
	Slide 5: How to understand in-context learning?
	Slide 6: Large Language Models are Implicitly Topic Models: Explaining and Finding Good Demonstrations for In-Context Learning
	Slide 7: LLMs are implicitly topic models
	Slide 8: Data generation direction matters
	Slide 9: Causal v.s. anti-causal
	Slide 10: Analysis in-context learning classifier
	Slide 11: Algorithm overview
	Slide 12: Latent Concept Learning
	Slide 13: Demonstration Selection
	Slide 14: In-context Learning
	Slide 15: Main results
	Slide 16: A TSNE plot of the learned concept tokens
	Slide 17: Takeaways
	Slide 18: Guiding Language Model Reasoning with Planning Tokens
	Slide 19: Chain-of-thoughts reasoning
	Slide 20: Planning errors made by LLMs
	Slide 21: A Bayesian view of chain-of-thoughts
	Slide 22: Planning tokens
	Slide 23: Training with planning tokens
	Slide 24: Step classifiers
	Slide 25: Planning tokens implementation
	Slide 26: Combination with parameter efficient tuning
	Slide 27: Main results
	Slide 28: Reasoning length effect
	Slide 29: Error types predicted by GPT4
	Slide 30: Takeaways
	Slide 31: Thank you!

